您选择的条件: Cuifang Kuang
  • End-to-end computational design for an EUV solar corona multispectral imager with stray light suppression

    分类: 天文学 >> 天文仪器与技术 提交时间: 2024-01-22 合作期刊: 《天文技术与仪器(英文)》

    摘要:An extreme ultraviolet solar corona multispectral imager can allow direct observation of high temperature coronal plasma, which is related to solar flares, coronal mass ejections and other significant coronal activities. This manuscript proposes a novel end-to-end computational design method for an extreme ultraviolet (EUV) solar corona multispectral imager operating at wavelengths near 100 nm, including a stray light suppression design and computational image recovery. To suppress the strong stray light from the solar disk, an outer opto-mechanical structure is designed to protect the imaging component of the system. Considering the low reflectivity (less than 70%) and strong-scattering (roughness) of existing extreme ultraviolet optical elements, the imaging component comprises only a primary mirror and a curved grating. A Lyot aperture is used to further suppress any residual stray light. Finally, a deep learning computational imaging method is used to correct the individual multi-wavelength images from the original recorded multi-slit data. In results and data, this can achieve a far-field angular resolution below 7", and spectral resolution below 0.05 nm. The field of view is ±3 R☉ along the multi-slit moving direction, where R☉ represents the radius of the solar disk. The ratio of the corona's stray light intensity to the solar center's irradiation intensity is less than 10−6 at the circle of 1.3 R☉.

  • Fast generation of arbitrary optical focus array

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report a novel method to generate arbitrary optical focus arrays (OFAs). Our approach rapidly produces computer-generated holograms (CGHs) to precisely control the positions and the intensities of the foci. This is achieved by replacing the fast Fourier transform (FFT) operation in the conventional iterative Fourier-transform algorithm (IFTA) with a linear algebra one, identifying/removing zero elements from the matrices, and employing a generalized weighting strategy. On the premise of accelerating the calculation speed by >70 times, we demonstrate OFA with 99% intensity precision in the experiment. Our method proves effective and is applicable for the systems in which real-time OFA generation is essential.

  • Multispectral large-area X-ray imaging enabled by stacked multilayer scintillators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Conventional energy-integration black-white X-ray imaging lacks spectral information of X-ray photons. Although X-ray spectra (energy) can be distinguished by photon-counting technique typically with CdZnTe detectors, it is very challenging to be applied to large-area flat-panel X-ray imaging (FPXI). Herein, we design multi-layer stacked scintillators of different X-ray absorption capabilities and scintillation spectrums, in this scenario, the X-ray energy can be discriminated by detecting the emission spectra of each scintillator, therefore the multispectral X-ray imaging can be easily obtained by color or multispectral visible-light camera in one single shot of X-ray. To verify this idea, stacked multilayer scintillators based on several emerging metal halides were fabricated in the cost-effective and scalable solution process, and proof-of-concept multi-energy FPXI were experimentally demonstrated. The dual-energy X-ray image of a bone-muscle model clearly showed the details that were invisible in conventional energy-integration FPXI. By stacking four layers of specifically designed multilayer scintillators with appropriate thicknesses, a prototype FPXI with four energy channels was realized, proving its extendibility to multispectral or even hyperspectral X-ray imaging. This study provides a facile and effective strategy to realize energy-resolved flat-panel X-ray imaging.